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A B S T R A C T

In the 1970s a novel branch of statistics emerged focusing its effort on the selection of a function for the
pattern recognition problem that would fulfill a relationship between the quality of the approximation and its
complexity. This theory is mainly devoted to problems of estimating dependencies in the case of limited sample
sizes, and comprise all the empirical out-of sample generalization approaches; e.g. cross validation (CV). In this
paper a data-driven approach based on concentration inequalities is designed for testing competing hypothesis
or comparing different models. In this sense we derive a Statistical Agnostic (non-parametric) Mapping (SAM)
for neuroimages at voxel or regional levels which is able to: (i) relieve the problem of instability with limited
sample sizes when estimating the actual risk via CV; and (ii) provide an alternative way of Family-wise-
error (FWE) corrected 𝑝-value maps in inferential statistics for hypothesis testing. Using several neuroimaging
datasets (containing large and small effects) and random task group analyses to compute empirical familywise
error rates, this novel framework resulted in a model validation method for small samples over dimension
ratios, and a less-conservative procedure than FWE 𝑝-value correction to determine the significance maps
from the inferences made using small upper bounds of the actual risk.
. Introduction

Over the last few decades translational neuroscience has transi-
ioned from qualitative case reports to quantitative, longitudinal and
ultivariate population studies in the quest for defining patterns of
isease pathogenesis, prognostic indicators and treatment response.
euroscience has provided valuable insights by means of classical

tatistics, primarily statistical inference based on null-hypothesis (𝐻0)
esting that the brain mapping community has predominantly used for
xploratory analyses in whole brain searches [1]. In this context, clas-
ical inference emphases in-sample, image-based statistical estimates
rom previously assumed data models to determine the existence of
elevant effects (large or subtle) across a range of designs where the
ritical 𝑝-value (significance vs. non-significance) can be complemented
y the corresponding effect-size estimates [2].

Recently, several advances for combining 𝑝-value maps have been
roposed based on the concept of prevalence [3,4] beyond the fixed and
ixed (random) effects models [5]. Common to all these approaches is

o assume a voxel-wise model that allows a proportion of conditions

∗ Corresponding author at: DaSCI Institute, University of Granada, Spain.

or subjects that activated the voxel at some mixing proportion. This
assumption that is more realistic than those assumed in classic random
effect approaches, e.g. homogeneity in the activation pattern (binary),
clearly opens a new application field for modern statistics.

Conversely, out-of sample generalization approaches common in
machine learning (ML), such as Cross-Validation (CV), try to estimate
on unseen new data the accuracy of the classifier in the (binary)
classification problem. Despite the methods and goals of predictive CV
inference being distinct from classical extrapolation procedures [6],
they are actually exploited within statistical frameworks aimed at
assessing statistical significance [7]. Examples include bootstrapping,
binomial or permutation (‘‘resampling’’) tests [8], which have been
demonstrated to be competitive outside the comfort zone of classical
statistics, filling otherwise-unmet inferential needs.

In the pattern classification problem we usually assume the ex-
istence of classes (𝐻1) that are differentiated by classifiers that are
measured by their performance in terms of accuracy (𝐴𝑐𝑐) or prevalence
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on a independent dataset, and conclude (improperly in a statistical
sense) 𝐻1 using empirical confidence intervals. In limited sample sizes
he most popular K-fold CV method [9] has been demonstrated to
ub-optimally work under unstable conditions [10–12]. In such circum-
tances, the predictive power of the fitted classifiers can be arguable.
oreover, recent works have partially demonstrate that, when using

nly a classifier’s empirical accuracy as a test statistic, the probability
f detecting differences between two distributions is lower than that of
bona fide statistical test [13,14].

Beyond the latter empirical techniques for the estimation of perfor-
ance, ML is well-framed into a data-driven statistical learning theory

SLT) which is mainly devoted to problems of estimating dependencies
ith limited amounts of data [15]. Although, CV-ML approaches were
ot originally designed to test hypotheses based on prevalence in brain
apping [1], they are theoretically grounded to provide confidence

ntervals in the classification of image patterns (protected inference)
hat can be seen as maps of statistical significance. As shown in the

present study, this can be achieved by assessing the upper bounds of the
actual error in a binary classification problem (a confidence interval),
and by using simple significance tests of a population proportion within
it. Definitely, this would result in improvements to the test’s statistical
power based on accuracy.

The paper is organized as follows. In Section 2, using the agnostic or
model-free formulation of the learning problem we derive the analytical
upper bound of the real (actual) error from the empirical (measured)
error of the model under realistic conditions. Then, we apply these
concepts to neuroimaging and define the significance of a region, or the
Statistical Agnostic Mapping (SAM), by comparing the upper bound of
the actual error of the model in that region to a statistical threshold,
that is based on a test for a proportion, as shown in Section 3. Moreover,
sample size and the empirical settings regarding the complexity of the
selected classifiers (feature extraction and selection, FES) are key to the
proposed methodology as they condition the degrees of freedom and
the number of separating functions used to derive the deviation quantity.
Thus, the learning algorithm is preferably fitted with a linear classifier
in the best possible way to low dimensional data, as shown in Section 4,
to estimate the empirical error from the accuracy of classification of the
voxels within a region using the full dataset.

In Section 6 we demonstrate the ability of the proposed method
to detect biased significant regions, within a confidence interval, and
to provide several operation modes (depending on the selected up-
per bound) with a conservative and valid regionwise inference for
controlling the FWE. The experiments include a fair comparison with
the standard SPM package1 under several parameter combinations and
thresholding approaches. Finally, some discussions are described in
Section 7 and conclusions are presented in Section 8.

2. Methods: bounding the actual error with probability 1-𝜹

2.1. Background on agnostic learning

Assume the agnostic model for the problem of binary pattern classi-
fication as proposed in [16] applied to a region of interest (ROI) within
an image. Given an independent and identically distributed sample
𝐙𝐧 = (𝐙𝟏,… ,𝐙𝐧) (e.g images or ROIs) of 𝑑-dimensional predictors
(e.g. voxels) and classes (e.g. conditions) pairs 𝑍𝑖 = (𝐱𝐢, 𝑦𝑖), where each
of them is drawn from the unknown distribution 𝑃 ∈  , the goal is
to construct a good approximation to an unknown target function or
classifier 𝑓 ∗, using a class of functions  : 𝑓 ∶ 𝐗 → 𝑈 , and evaluating
their goodness by a predefined expected loss:

𝐿𝑃 (𝑓𝑛) ≡ E[𝓁(𝑦, 𝑓𝑛)|𝐙𝐧] = ∫𝐗×𝑌
𝓁(𝑦, 𝑓𝑛)𝑃 (𝑑𝐱, 𝑑𝑦) (1)

1 https://www.fil.ion.ucl.ac.uk/spm/.
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where the loss function 𝓁 ∶ 𝑌 × 𝑈 → [0, 1] and 𝑓𝑛 is a random element
of the hypothesis space 𝑈 (the output class or condition proposed by
the classifier).

To simplify notation, the function composition,2 i.e. 𝑔 = 𝓁◦𝑓 , defines
the class of functions  : 𝑔𝓁 ∶ 𝑌 × 𝐗 → [0, 1] with expected loss
(probability of error) 𝑃 (𝑔𝓁) similar to Eq. (1). Thus, the empirical error
can be determined by counting the number of ‘‘misses’’ in the sample:

𝑃𝑛(𝑔𝓁) =
1
𝑛

𝑛
∑

𝑖=1
𝑔𝓁(𝐙𝐢) ≤ 1 (2)

A learning algorithm particularly selects 𝑔𝑛 given the sample 𝐙𝐧 via
he empirical risk minimization (ERM) 𝑔∗𝑛 = arg min𝑔∈ 𝑃𝑛(𝑔) [15], and
rovides a real error 𝑃 (𝑔𝑛) (on the ideal infinite population):

• close to that obtained with the sample, that is, 𝑃 (𝑔𝑛) ≃ 𝑃𝑛(𝑔𝑛)
• and to the minimum risk , 𝐿∗

𝑃 () = inf𝑔∈ 𝑃 (𝑔) = 𝑃 (𝑔∗)

.2. Upper bound based on concentration inequalities

Unfortunately, 𝑃 (𝑔𝑛) ≃ 𝑃𝑛(𝑔𝑛) is not generally true. More precisely:

(𝑔𝑛) > 𝑃𝑛(𝑔𝑛) + 𝜖 > 𝑃 (𝑔∗) + 𝜖; (3)

ith an arbitrarily 𝜖 > 0. Under the worst case scenario the uniform
eviation can be defined as 𝛥𝑛(𝑍𝑛) = sup𝑔∈ |𝑃𝑛(𝑔) − 𝑃 (𝑔)|, for any 𝑔 ∈
. Using the ERM algorithm we readily get the following concentration
nequalities:

𝑃 (𝑔𝑛) ≤ 𝑃 (𝑔∗) + 2𝛥𝑛(𝐙𝐧)
𝑃 (𝑔𝑛) ≤ 𝑃𝑛(𝑔𝑛) + 𝛥𝑛(𝐙𝐧)

(4)

o our purposes, we prefer to work in terms of prevalence or accuracies,
hus the second equation can be rewritten to:

𝐴𝑐𝑐(𝑔𝑛) ≥ 𝐴𝑐𝑐𝑛(𝑔𝑛) − 𝛥𝑛(𝐙𝐧)
worst case: 𝐴𝑐𝑐(𝑔𝑛) = 𝐴𝑐𝑐𝑛(𝑔𝑛) − 𝛥𝑛(𝐙𝐧)

(5)

here 𝐴𝑐𝑐 = 1 − 𝑃 refers to the actual and empirical accuracies.
Bounding 𝛥𝑛(𝑍𝑛) can be (but not readily) achieved by using sev-

ral theorems and lemmas of the SLT [17–21] to finally get (see
ppendix A)3:

(𝑔𝑛) ≤ 𝑃 (𝑔∗) + 8
√

log(𝑁)
𝑛

+
√

log(1∕𝛿)
2𝑛

(6)

with probability 1−𝛿, where 𝑁 is the cardinality of (𝑍𝑛) or the number
of separating functions given the sample realization.4

3. Statistical agnostic mapping

The significant areas derived from SAM correspond by construction
with those regions having an empirical error 𝑃𝑛(𝑔𝑛) that, under the

orst case scenario, has associated an actual error 𝑃 (𝑔𝑛) greater than
he random guess accuracy 𝜋 = 0.5. Confidence intervals derived from
he concentration inequalities allow us to bound the worst case at
he ‘‘upper’’ border of the confidence interval, providing a protective
nference. Thus, within this confidence interval, a significance test can
e used to make an inference about whether the accuracy value for a
pecific region differs from the null-hypothesis of the random propor-
ion 𝜋 = 0.5 (see Appendix A). Therefore, the statistical significance
f any region is assessed, in combination with confidence intervals,
y evaluating the 𝑝-value of any ROI at a given significance level,
.e. 𝛼 = 0.05. A total of 𝑙 = 116 standardized regions [22] were analyzed
ithin a protective interval, avoiding the limitations of significant tests

o distinguish statistical from practical importances.

2 𝑓 (𝑥) = 𝑢; 𝓁 = 𝓁(𝑦, 𝑢) ⇒ 𝓁(𝑦, 𝑓 (𝑥)) = 𝓁𝑦(𝑓 (𝑥)) =
(

𝓁𝑦◦𝑓
)

(𝑥) ≡ 𝑔𝓁𝑦
(𝑥) =

𝑔𝓁(𝑦, 𝑥).
3 A similar bound can be achieved for the second row in Eq. (4).
4 A trivial bound for this shattering number can be found: 𝑁 ≤ 2𝑛.

https://www.fil.ion.ucl.ac.uk/spm/
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In terms of classical statistics the SAMs are derived as the following.
Given a set of regions 𝑗 = 1,… , 𝑙 we evaluate for each region the
accuracy under the worst case in Eq. (4) by the following hypothesis
test:
𝐻0 ∶ 𝐴𝑐𝑐𝑗 > ̂𝐴𝑐𝑐; region j is significant
𝐻1 ∶ 𝐴𝑐𝑐𝑗 < ̂𝐴𝑐𝑐; region j is not significant (7)

where 𝐴𝑐𝑐𝑗 = (1 − 𝑃 𝑗
𝑛 ) − 𝛥𝑛(𝐙𝑛) is the estimated actual accuracy in the

lassification of region 𝑗 with probability 1 − 𝛿 (see Eqs. (8) and (9)),
nd ̂𝐴𝑐𝑐 is the averaged proportion of subjects correctly classified in
ll regions within the confidence interval. Note that the term (1 − 𝑃 𝑗

𝑛 )
s the empirical accuracy of region 𝑗. Further details regarding the test
or a proportion based on prevalence to achieve population inference
re given in the Appendix A (see Eq. (18)), although other kind of tests
ould be applied as well, like those described in [23].

. Fitting the selected function to current data

In order to minimize the left part of Eq. (6) we could minimize one
or both) of the elements on the right. However, they are dependent on
ach other in terms of the classifier complexity [15]. One solution could
e, as explained in the next section, to prevent the increase of 𝑁 ∝
(𝑛, 𝑑) given the sample 𝐙𝑛, by selecting a low classifier order [24],

.e. a linear decision function. However, this comes at the cost of the
ossibility of a non-negligible empirical error.

.1. Feature extraction and selection

As an attempt to reduce the ratio 𝑑∕𝑛 (curse of dimensionality), the
achine learning community has deployed FES methods to enhance

he classification performance while preserving the system complexity.
his can be achieved by removing irrelevant features from the sam-
le, which can also facilitate interpretation (FS), and by identifying
ultivariate sets of meaningful features (FE) that best discriminate the

lasses [25]. The final aim is to provide an almost linearly separable
lassification problem in the feature space.

Several methods have been described based on statistical tests for
S [26], matrix decompositions [27] or even deep learning archi-
ectures for FES [28]. Here we perform FE using a popular method
n neuroscience: Partial Least Squares (PLS) [27]. PLS methods have
emonstrated its utility in describing the relationships between brain
ctivity and experimental design or behavior measures within a mul-
ivariate framework (see [10,27,29] and the Appendix A for mathe-
atical details and the interpretation of the PLS-maps as a classical

-test).

.2. Linear decision functions: a small upper bound

Regularized linear decision functions have been recently applied
o neuroimaging for detecting activation patterns, and compared to
arametric hypothesis testing, such as univariate t-tests [30–32]. In
eneral, they have limited their analyses to in-sample estimates based
n resampling, without demonstrating their out-of-sample performance
n terms of confidence intervals.

Recall that the minimization of the left part of inequality (6) can be
chieved by decreasing the number of separating functions 𝑁 given the
ample (𝐙𝐧). This quantity is decreased by selecting a linear decision
unction-based classifier in a binary classification problem, as previ-
usly described [15,24], etc. The selection of higher order classifiers,
.g. based on multikernel learning [33], is a trade-off between 𝑁 and
he empirical error. After selecting the feature set by FES methods, the
oncentration inequalities (6) obtained with linear classifiers result in a
trong association with a given confidence level whenever the extracted
eatures are significant across ROIs and group comparisons.

Beyond the existing caveats and solutions when using regularization
200

ethods in neuroimaging for FS, we adopt the linear support vector
Fig. 1. The upper bound of inequality (9) connecting actual and empirical errors with
95% level of confidence. Note how increasing the feature dimension results in a larger
bound (blue-dashed line). However, working in low dimensional scenarios, i.e. 𝑑 = 1, 2,
and using medium-sized datasets (𝑛 = 500), the confidence interval is less than 10%.

machine (SVM) classification algorithm which allows us to tentatively
evaluate the worst case of 𝑁 , that is, S𝑛() ≡ sup𝐱𝐧∈𝐙𝐧 (𝑁) and to set
the following upper bound [15]:

𝛥𝑛(𝐙𝐧) ≤
√

ℎ((log(2𝑛∕ℎ) + 1) − log(𝛿∕4))
𝑛

(8)

with probability 1 − 𝛿 and ℎ is the Vapnik–Chervonenkis (VC) di-
mension, e.g ℎ = 𝑑 + 1 for linear classifiers. In the same manner,
several upper bounds could be tested based on several innovative
concepts and paradigms, such as those based on data distributions,
set shape, Rademacher averages, pseudo-dimension, fat-shattered di-
mension, etc. [34,35]. We preferred to use, due to its simplicity, the
upper bound recently proposed in [11] that is strongly grounded on the
geometrical assumption of in general position distributed samples and
the function-counting theorem of homogeneously linearly separable
dichotomies [24]:

𝛥𝑛(𝐙𝐧) ≤
√

(𝑑 − 1) log(𝑛 + 1) + (2 + log(1∕𝛿))
2𝑛

(9)

where the previous bound is obtained by assessing the number of
linear decision functions derived from the latter theorem and then by
bounding 𝑁 as 𝑁 = 2

∑𝑑−1
𝑘=0

(𝑛
𝑘

)

≤ 2(𝑛 + 1)𝑑−1.
With the help of the inequalities (8) and (9), we can even evaluate

the deviation of the empirical error from the actual error at voxel
level, although it is preferable, for the aforementioned reasons, to do
it region-wise using a fitted linear SVM classifier in the multivariate
feature space (see Fig. 1). In this sense, the motivation for a multivari-
ate framework in assessing the areas of relevance is analogous to other
proposed techniques for addressing the multiple comparison problem
in functional imaging, e.g. Random Field Theory for neuroimaging
analysis [36], random/mixed/conjunction analyses in multiple 𝑝-value
maps [3] or the classical 𝑝-value corrections for multiple comparison
after null-hypothesis testing. In general, only those voxels (or ROIs)
showing a tight association, i.e. high performance in terms of accuracy,
should be considered as relevant maps or patterns in that particular
condition with probability 1 − 𝛿.

5. Summary of the procedure

The following summary of the procedure has been implemented in

SAM (middle and right column in Fig. 2):
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• Step 1: Data Preparation and parcellation: Design the group
comparison (design matrix) and select the regions (ROI) to be
analyzed across subjects.
for each ROI do:

• Step 2: Training feature set

– Apply a FES stage, e.g. based on PLS, to the ROI and obtain
𝐙𝐧 (the feature space)

– Fit linear SVM by ERM to obtain 𝑔∗𝑛 (resubstitution estimate
of the actual error)

• Step 3: Assessment of concentration inequalities:

– Compute empirical error (or accuracy) Eqs. (4) and (5).
– Determine the actual accuracy 𝐴𝑐𝑐𝑗 under the worst case

with probability 1 − 𝛿

end for
• Step 4: Statistical assessment of the accuracies: Calculate the

z-test statistic for each actual accuracy in {𝐴𝑐𝑐𝑗} Eq. (18) for
testing significance.

In Section 6 and in the supplementary material, we will show
how the combination of the aforementioned protective intervals and
significance tests may be used to derive a SAM in different group
comparisons, such as Alzheimer’s disease (AD) vs normal controls
(NC), Parkinson’s disease (PD) vs NC and on a well-known example
of single-subject activation map in fMRI, and how they relate with the
classical approach based on null-hypothesis testing, i.e. two sample t-
test with corrected-p value. Unlike, previous approaches, the proposed
model-free method is less specific but more robust against sample size,
artifacts and nuisance effects. See the complete diagram of the proposed
method in Fig. 2.

6. Experiments

The aim of this section is to present a novel methodology in
neuroimaging based on analytical concentration inequalities,5 and to
experimentally compare them to the accepted framework used by the
neuroscience community based on the SPM analysis [37,38]. Thus, we
will assess several experiments collected from well-known databases
that include imaging data from patients with a variety of condi-
tions/pathologies. Nevertheless, we will avoid somewhat related theo-
retical discussions about the comparison of both branches of statistics,
referring the readers to the introduction section in this paper and the
vast extant literature addressing these issues [1,6,7,39].

All the datasets were preprocessed using standardized neuroimaging
methods and protocols implemented by the SPM software (registration
in MNI space by spatial normalization and segmented to differentiate
brain tissues, e.g. Gray matter (GM)) [37]. Then, we performed PLS-
based feature extraction (𝑑 = 1) and fitted a linear SVM following the

ethodology presented in the previous sections.

.1. A structural MRI (sMRI) study: the ADNI database

Data used in preparation of this paper were obtained from the
lzheimer’s Disease Neuroimaging Initiative (ADNI) database

adni.loni.usc.edu). The ADNI database contains 1.5 T and 3.0 T t1w
RI scans for AD, Mild Cognitive Impairment (MCI), and cognitively
C which are acquired at multiple time points. Here we only included
.5T sMRI corresponding to the three different groups of subjects. The
riginal database contained more than 1000 T1-weighted MRI images,
omprising 229 NC, 401 MCI (252 stable MCI and 149 progressive
CI) and 188 AD, although for the proposed study, only the first

5 please visit https://github.com/SiPBA to download a preliminary version
f the software in Matlab.
201

c

Table 1
Demographics details of the datasets (ADNI, PPMI, VV and fMRI), with group means
with their standard deviation.

Status Number Age Gender (M/F) MMSE

MRI
ADNI NC 229 75.97 ± 5.0 119/110 29.00 ± 1.0

MCI 401 74.85 ± 7.4 258/143 27.01 ± 1.8
AD 188 75.36 ± 7.5 99/89 23.28 ± 2.0

SPECT
PPMI NC 194 53.02 ± 2.27 129/65 –

PD 168 53.14 ± 2.37 103/65 –

SPECT
VV NC 108 69.05 ± 14.53 54/54 –

PS 100 68.62 ± 13.41 53/47 –

fMRI
Auditory Res 41 – 1 –

List 43 – 1 –

medical examination of each subject is considered, resulting in 818
GM images. Following the recommendation of the National Institute on
Aging and the Alzheimer’s Association (NIA-AA) for the use of imaging
biomarkers [40], we considered the group comparison NC vs. AD for
establishing a clear framework for comparing statistical paradigms
(SPM and SAM), since the MCI class is strictly based on clinical criteria,
without including any other biomarker [41]. Demographic data of
subjects in the database is summarized in Table 1.

6.1.1. Static classification results
First, the proposed methodology try to fit in an optimal way a linear

SVM classifier in the feature space obtained after a FES approach (PLS).
With the aim of applying a regression-type analysis to the dataset,
we parcellated the brain volume into 116 standardized regions [22]
and then, obtained an optimistic estimation of the actual error 𝑃 (𝑔𝑛)
as shown in solid blue line in Fig. 3. This estimation is corrected
by the use of upper bounds drawing a novel set of accuracy values
(proportions) and a confidence interval, depending on the selected
theoretical method, i.e. Vapnik’s bound. The lower accuracies in this
plot corresponds to the worst cases as considered by the selected
concentration inequalities.

It is worth mentioning that the results, shown in Fig. 3, are obtained
with the first PLS component extracted by this regression analysis
(𝑑 = 1). This PLS score for each subject can be conceptualized as the
representation of the subject into a multi-dimensional reference system
as described in [10] (see supplementary material for the analysis in
higher dimensions).

6.1.2. Statistical agnostic maps
In Fig. 3 we heuristically identified all those relevant regions for

the characterization of AD based on absolute values using the com-
plete ADNI dataset. Therefore, a definition of relevancy in terms of
hypothesis testing within confidence intervals is required. Following
the method presented in the Appendix A, we provide an automatic
(and statistical) method for selecting ROIs in which a regionally specific
activation is identified. As depicted in Fig. 4, the main result is the SAM
obtained with the same 𝑝-value as the one of confidence intervals using
concentration inequalities.

For further comparison with the SAM proposed in this paper, sig-
nificance maps were obtained with SPM (voxel-wise inference) using
a standard two-sample t-test with FWE 𝑝-value = 0.05 (and null extent
threshold -voxels-).6 For SPM we first conducted a first-level analysis to
derive the GLM for the dataset under assessment (a design matrix for
group comparisons) and then, in the 2nd-level analysis, the contrast

6 For a full analysis based on cluster and voxelwise inferences using the
omplete dataset please see the supplementary material.

https://github.com/SiPBA
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Fig. 2. Complete diagram of the proposed methodology including typical preprocessing steps in SPM for different modalities (left column of blocks), classification fitting and FES
for actual risk estimation (middle column) and inference to derive the SAM (right column).

Fig. 3. Accuracy values and upper bounds in standardized ROIs (only significant regions from #30 to #90 are shown) for three methods based on concentration inequalities in (4)
and (6). We highlight several regions, relevant in the biological definition of AD, i.e. Hippocampus, Temporal, Amygdala and Parahippocampal regions, corresponding to peaks of
these curves. Moreover, observe how the VC approach is more pessimistic than the one based on [11]. The confidence interval is drawn in the space between the solid blue line
and the colored lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Accuracy values in the worst case using the method in [11] and the set of probabilities (log(p-values)) within the confidence interval. The ROIs (p< 0.05) are detected out
of 116 standardized regions using a significance test for a proportion 𝜋 (see Appendix A). Note that we show the probability of observation (in the right ‘‘y axis’’) of the set of
accuracy values under 𝐻0, i.e. random distribution.



Information Fusion 66 (2021) 198–212J.M. Gorriz et al.
Fig. 5. Statistical comparison of brain volumes using SAM (left) and SPM (right) in the ADNI database. Green area corresponds to the whole dataset while the rest of colors
(red, blue, yellow) are linked to data subsets, which are plotted in increasing 𝑛 (opacity of representations is preserved for clarity reasons). The ROIs selected for increase
𝑛 = 50, 100, 200, 417, satisfy 𝑆𝑗 ⊂ 𝑆𝑗+1 except for 𝑛 = 50 where an additional region ‘‘Frontal Mid L’’ is selected. It is worth mentioning that all the ROIs extracted in different
sample-size configurations were included in the confidence interval and with probability slightly higher than the significance level (𝛼 = 0.05). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
images were fed into a GLM for implementing the statistical test. A
direct comparison with the SPM approach is shown in Figs. 5 and 6, in
terms of the sample-size analysis and the relevant regions determined
by both methods. Key to this comparison is the different working
operations, i.e. SAM includes the spatial structure of data at the first
FES stage, whilst SPM do it at the final stage, by means of RFT. For this
reason, SPM is more specific (voxel-wise) but widespread comparing to
SAM. The number of identified ROIs conforming the SPM increases as
the number of sample increases, unlike the proposed approach, which
provides the same volumetric differences for 𝑛 = 200, 417. It is worth
mentioning that from the perspective of SLT, due the small ratio 𝑛∕𝑑
in all these experiments proposed in this paper (and in the extant
literature), we are dealing with the ‘‘small sample size problem’’. In
terms of classical statistics (SPM) this derives in a challenging scenario
that constrains the generalization of the results from small datasets to
new unseen samples.

Fig. 6 shows that main regions identified by SPM are included in
the ROIs deployed by SAM-based approach. In addition, the number
of ‘‘activated’’ voxels in SPM is associated with sample size and these
voxels are widespread across several anatomical regions. The number
of voxels in ROIs obtained by SAM is almost independent on the sample
size, except for the extreme case 𝑛 = 50, and given the magnitude of
the effect being sought in the NCvsAD comparison.

6.1.3. Is SAM dependent on the a-priori specified atlas?
The SAM approach proposed with ML also relies on an a priori

atlas [22], that divides the brain volume into an arbitrary set of ROI, as
shown in Section 3. In this section we investigate the robustness of SAM
against the number of predictors (ROI dimensions). The standardized
regions considered in this paper have different sizes, from hundreds
to thousands of voxels. They closely align with anatomical structures
traditionally used in the medical literature that, unlike voxel-wise
approaches, have demonstrated their value for supporting the diagnosis
of neurological diseases. To evaluate the impact of the parcellation
scheme on SAMs performance, we additionally parcellated each ROI
within the former atlas using a simple cluster approach (k-means ap-
proach) on the voxels coordinates (x, y, z) that resulted in 232 (𝐾 = 2),
348 (𝐾 = 3) and 464 (𝐾 = 4) regions. Fig. 7 shows an example of
the new generated atlas for K = 4 on the left (464 regions), and the
SAMs obtained with the new configurations on the right, using the same
experimental setup as detailed in Section 6.1.2.

In summary, similar to voxel-wise SPM, this method improves its
sensitivity when the number of ROIs increases, but it could increase
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the number of False Positive (FP) regions, as shown in Fig. 7(B).
However, in general, the regions were very similar across all different
configurations. although another interesting question arises in relation
to the control of FPs of the SAM approach, that will be discussed in the
next section.

6.1.4. Controlling the FWE rate in a small-effect dataset
Moreover, we should analyze the ability of the proposed method

for controlling the FWE rates for voxel, clusterwise or regionwise
inference as shown in [42]. To this purpose two groups of subjects
(𝑁 = 50, 100, 228) are randomly drawn from a relatively large (𝑁 =
228) group of NCs from the ADNI dataset, where the null hypothesis of
no group difference in brain activation should be true.

A total of 48k random group analyses were performed, following the
same steps as in the previous section (parcellation, FES, function fitting,
etc.) to compute the empirical false-positive rates of SAM and SPM (in
cluster and voxel-wise inferences). Regarding the SPM study, two types
of two-sample t-test-based inferences were performed using FWE and
uncorrected 𝑝-value. Each statistic map was first thresholded using a
CDT of 𝑃 = 0.001 (uncorrected for multiple comparisons). The degree
of FP to compute the FWE rate was finally estimated as the number
of significant voxels within any of the 116 atlas regions, meaning a
voxelwise inference. Furthermore, a conservative clusterwise inference
is applied by using uncorrected p-values, where the surviving clusters
are then compared with a cluster extent threshold-based criteria in
regions (at least 25% of activated voxels in any of the 116 regions of
the atlas). The estimated FWE rates are simply the number of analyses
with a significant results divided by the number of analyses (1.000).

Fig. 8 illustrates similar results as those described in [42] that
were obtained using a conservative voxelwise inference and invalid
clusterwise inference for the two-sample t test used in these simula-
tions. SAM provided a conservative operation mode when the Vapnik’s
bound (see Eq. (8)) was applied to the empirical data (often falling
below the significance level, e.g. 5%). It also performs a very realistic
and competitive approach when the estimation of the upper bound
in Eq. (9) is used, as shown in [11]. In particular, FWE rates for
clusterwise inference far exceed their nominal level using SPM (using
a CDT of 𝑃 = 0.001 uncorrected for multiple comparisons), despite the
surviving clusters were then compared with an cluster-extent threshold
based criterion of 25% of activated voxels in that region for a fair
comparison with SAM. On the other hand, parametric voxelwise (SPM)
and regionwise (SAM, e.g. Eq. (8)) based inferences are valid but over
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Fig. 6. (a) SPM (red) over SAM (green) using the complete ADNI dataset (𝑛 = 417). (b) overlap analysis vs sample size. Observe how the SPM activation map linearly increases
with 𝑛 and is located on more than 80 standardized regions with the whole dataset (although part of these isolated activation voxels could be removed from the map using the
extent threshold). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
conservative, often falling below the predefined levels of significance,
𝛼 = 0.001; 0.01; 0.05; 0.1 (see Fig. 8). However, estimated FWE rates
based on corrections described in [11] are close to the predefined
levels, and are almost independent on the number of subjects that were
randomly drawn in the simulation. Finally, the true positive (TP) rate7

(i.e. the null hypothesis of no group differences in brain activation
should be false) may also be assessed on balanced groups of subjects
(𝑁 = 50, 100, 150, 300) that are randomly drawn from a relatively large
(𝑁 = 229+ 188) group of NC and AD from the ADNI dataset (making a
total of 64K analyses). At a given significance level, the TP rate should
be almost constant for different sample sizes (i.e. the method provides
the same number of significant regions in each experiment). As clearly
shown in the bottom right panel of Fig. 8, the SAM methodology
provides almost constant TP rate with different sample sizes, unlike
SPM TP rate in cluster and voxel inferences, which clearly increases
with sample size.

7. Discussion

As shown in the latter section, in general the SAM is a very ro-
bust method, in terms of sample size, to find relevant standardized
areas, and a stable framework which contains those regions defined as
relevant by the SPM, with sufficiently large sample size. It is worth
mentioning that SAM employs the concept of prevalence [4] to derive
the activation maps, since it is the result of the classification per-
formance in terms of accuracies or proportions in the feature space.
The experiments carried out in different experimental frameworks and
datasets have demonstrated the ability of this multivariate approach for
establishing a novel model-free method for the assessment of significant
changes across brain volumes.

The behavior of the analyzed methods depends on the size of effect
we are interested in. In the seek of subtle effects, such as the ones

7 The estimated TP rates are simply the probability of a region to be
activated, e.g in voxelwise SPM 𝑃 = #𝑇𝑃 .
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𝑇𝑃 116
found in AD or Autistic patterns, and provided that hypothesis tests
cannot separate important, but subtle, and actually trivial effects [6],
our SAM focus on standardized ROIs to avoid the presence of false
positives in the sought maps. In this sense, SPM is more specific and can
detect, within these regions sought by SAM, which substructures are
responsible for the discrimination between classes. Nevertheless, this
voxel-wise analysis could be carried out as well using this framework,
e.g. by assessing the PLS-maps derived at the FES stage as shown
in [10]. However, we additionally found that using the SPM univariate
approach (i) small effect sizes in a heterogeneous population with a
limited sample size fail to be detected whilst with larger samples sizes
their detection overshoots, and (ii) in large sample sizes it can yield
highly significant p values even when effect sizes are so small that they
become trivial in practical terms, e.g. the SPECT experiments, similar
to the findings in [43].

On the other hand, when large effects are bound to be found, SAM is
a suitable method in their detection since, with a few amounts of sam-
ples, it provides similar results than the ones obtained with complete
databases, i.e. auditory fMRI or DatSCAN PD imaging experiments. This
is in line with the main idea derived from [39] that when an effect
is found in small datasets is more than likely to be extrapolated in
large samples. On the contrary, only in small datasets with small –
but meaningful – effects that are missed, missing data, sampling bias,
etc. we found the absence of replication, i.e. across data collecting
sites [6]. All these statistical features in the analysis of neuroimaging
data are experimentally described in the datasets analyzed throughout
this paper.

At this stage of development, SAM is only aimed at providing an
alternative method for the univariate SPM based on two-sample t-
test in groups comparison with predefined classes. The method could
be adapted to manage other kind of contrasts or factorial analyses
by the multiple developments of ML and FES methods in the last
years [44]. This could include encoding and decoding applications
based on supervised learning to link brain images with stimuli [45] or
Error-Correcting Output Codes(ECOC) that were designed to solve the
multi-class classification problem [46].
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Fig. 7. (a) Example of atlas derived using k-means (𝐾 = 4) clustering from the standardized 116-region atlas. (b) SAMs obtained for different configurations in the number of
clusters, I: baseline; II: 𝐾 = 2; III: 𝐾 = 3; IV: 𝐾 = 4; and the corresponding relevant areas at the bottom table.
Finally, we have seen the usefulness of the confidence intervals
derived for the STL based on concentration inequalities to achieve a
confidence framework beyond sharp null-hypothesis testing. Key to
this methodology in the field of SLT is that it is based on in-sample
estimates (a similar procedure in exploratory analysis using hypothesis
testing), unlike the out-sample estimates in CV procedures, which
usually subdivide the (small) datasets for an estimation of the actual
error. In this way, an analytical bound depending on sample size (𝑛)
and number of predictors (𝑑) defines a ‘‘worst-case’’ operation point.
Nevertheless, the experiments showed the application of a systematic
hypothesis test for the selection of significant empirical errors which
conforms the highlighted regions in the SAM. Only in this case, a model
is assumed in the set of accuracies, but it has been demonstrated to be in
accordance with the nature of the one-dimensional data and sufficiently
accurate for our purposes.
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8. Conclusion

In this paper we present a data-driven approach, mainly devoted to
classification problems with limited sample sizes, to derive statistical
model-free (agnostic) mappings. Although the latter is not designed for
testing competing hypothesis or comparing different models in neuroimag-
ing, we derive the SAM assuming the existence of classes (𝐻1), at voxel
or multi-voxel level. The analysis of the ‘‘worst case’ considers the
upper bounds of the actual risk, under suitable theoretical conditions
(see methods and Appendix A) and a selection of regions with a
highly-corrected empirical risk, according with a test for significance
on a population proportion. As a conclusion, the SAM relieved the
problem of instability in limited sample sizes, when determining maps
of relevance in several neurological conditions, such as AD, PD or
auditory tasks, and resulted in a very competitive and complementary
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Fig. 8. Results for two-sample t test and ad-hoc clusterwise/voxel inference in regions, showing estimated FWE rates and TP rates for four different activity paradigms (FWE
SPM, uncor. SPM, Vapnik SAM, and i.g.p. SAM). Up: Distribution of FPs found in experiments; Bottom: on the left FWE rate, on the right experimental TP rate. These results
were generated using the ADNI data and {50; 100; 228} subjects in each group analysis for FWE rate and (𝑁 = 50, 100, 150, 300) for TP rate. Note: SPM unc: cluster-wise inference,
SPM-FWE: voxel-wise inference.
method with the SPM framework, which is mainly accepted by the
neuroimaging community. Moreover, the latter usually employs several
strategies for reducing the false positive rates in multiple comparisons,
such as the (FWE) corrected 𝑝-value maps in inferential statistics null-
hypothesis testing, and RFT to tackle with the spatial structure of
the maps. However, this approach is found to be very conservative
in our experiments and in the extant literature to control the FWE
rate. In a nutshell, the novel framework based on SLT provides similar
activation maps than the ones obtained by the voxel-wise SPM, but
defined on ROIs, under a rigorous development in scenarios with a
small sample/dimension ratio and large, small and trivial effect sizes,
as shown in the experimental part.
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Fig. 9. The same analysis as the one proposed in Fig. 3 but with 𝑑 = 𝑁𝑐𝑜𝑚𝑝 = 8. Note that the ROIs showing highest accuracy values (bottom on the right) are similar to the ones
selected in the latter experiment (bottom on the left) but with an increase in the confidence interval of the approximation. Examples are Hippocampal, Hippocampus, Amygdala
and Temporal regions (see Section 6.1).

Fig. 10. ADNI SAM and SPM for conservative and non-conservative inferences: (a) i.g.p (b) Vapnik’s (c) voxelwise (d) clusterwise.



Information Fusion 66 (2021) 198–212J.M. Gorriz et al.

d

S
N

A

A

d
e
a
i

P

w

s
F
t
p

𝛥

w
w

E

B
w

E

Fig. 11. Effect sizes and significant ROI selection using the proposed methodology. Observe in top figure (VV) the black arrows highlighting the observed trivial effects, outside
the specific region, in studies with low statistical power, i.e. 𝑛 = 50. In addition, we also remark the reduction of ‘‘true effect’’ in the top figure compared to the same effect
epicted in the bottom figure (PPMI), due to the presence of a more complex PD-plus pattern in the VV dataset.
outhern California. ADNI data are disseminated by the Laboratory for
euro Imaging at the University of Southern California.

ppendix A

.1. Upper bounding the worst case: a summary

A shown in Eq. (4) the consistency of the ERM algorithm is mainly
ependent on the evaluation of the two-sided uniform deviation of the
rror probabilities in the worst case. An upper bound with probability
t least 1 − 𝛿 for this quantity can be obtained by invoking a result
n [19], since 𝛥(𝐙𝐧) has the bounded differences property by 1∕𝑛:
(

𝛥(𝐙𝐧) ≥ E[𝛥(𝐙𝐧)] + 𝑡
)

≤ 𝑒−2𝑛𝑡
2 ≡ 𝛿; for any 𝑡 > 0 (10)

This is known as the generalized Hoeffding inequation. Then.,8

𝛥(𝐙𝐧) ≤ E[𝛥(𝐙𝐧)] +
√

log(1∕𝛿)
2𝑛

(11)

ith probability 1 − 𝛿.
Moreover, the expected value of the deviation E[𝛥(𝐙𝐧)] can be ab-

olutely bounded by the so-called Rademacher average [47] as follows.
irst, the uniform deviation is bounded by its expected value w.r.t
he set of random error functions 𝑔, using the ‘‘symmetrization’’ trick
roposed in [15] and the convexity property of the norm function:

𝑛(𝐙𝐧) = sup
𝑔∈

|𝑃𝑛(𝑔) − 𝑃 (𝑔)| ≤ E𝑔′ [sup
𝑔∈

|𝑃𝑛(𝑔) − 𝑃𝑛(𝑔′)|] (12)

here 𝑔′ is randomly selected from  and E𝑔′ [𝑃𝑛(𝑔′)] = 𝑃 (𝑔). Taking
hole expectations on the both sides we get:

[𝛥𝑛(𝐙𝐧)] ≤ E[sup
𝑔∈

|𝑃𝑛(𝑔) − 𝑃𝑛(𝑔′)|] (13)

y using the triangle inequality and the definition of empirical error
e finally obtain:

[sup
𝑔∈

|𝑃𝑛(𝑔) − 𝑃𝑛(𝑔′)|] ≤ 2E[sup
𝑔∈

|

1
𝑛

𝑛
∑

𝑖=1
𝑔(𝐙𝐢)|] (14)

8 Given 𝑥 a random variable, if 𝑃 (𝑥 > 𝜖) ≤ 𝜂 then 𝑃 (𝑥 < 𝜖) = 1 − 𝜂.
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where the right part of inequality is equally distributed as the
Rademacher average ((Z𝑛)) ≡ E𝜎 sup𝑔∈ |

1
𝑛
∑𝑛

𝑖=1 𝜎𝑖𝑔𝑖| , where 𝜎𝑖 are
independent random variables in {±1} with equal probability. Finally,
using Massart’s finite class lemma [18] we can bound the left part of
the latter inequality as:

E((Z𝑛)) ≤ 2
√

log(𝑁)
𝑛

(15)

Consequently, introducing Eqs. (11), (13), (14) and (15) in Eq. (4) we
finally prove Eq. (6).

A.2. The partial least squares algorithm

The PLS algorithm extracts the relevant patterns within ROIs across
brains by a regression between the 𝑛×𝑑 multivariate data matrix 𝐗 and
the 𝑛 × 1 label vector 𝐘. In short, we maximize:

𝝎𝑜 = max
𝜔

(𝑐𝑜𝑣 (𝐗𝝎,𝐘))2 ; s.t. ‖𝜔‖ = 1 (16)

where the score vectors 𝐬 = 𝐗𝝎 are iteratively extracted and used to
deflate the input matrix 𝐗 by subtracting their rank-one approximations
based on 𝐬 [29]. The deflation process is accomplished by the computa-
tion of the vector of loadings 𝐩 as a coefficient of regressing 𝐗 on 𝐬:

𝐩 = 𝐗𝑇 𝐬
𝐬𝑇 𝐬

= 𝐗𝑇 �̂� (17)

As shown in [11] the size of the input data 𝑑 is crucial to the assess-
ment of the relationship volume data and group membership within
the evaluated ROIs, where some statistical properties of the involved
processes, such as the stationarity or the ergodicity in the correlation,
must be assumed. The PLS-maps derived can be seen as a multivariate
two-sample test weighted by the scores of each sample with unknown
distribution, except for a normalization term that depends on the
pooled standard deviation [11], thus its statistical significance can be
assessed in a similar manner of a t-test [27].

A.3. Significance test for a proportion

Let denote �̂� the sampling distribution of empirical errors 𝑃 𝑖
𝑛(𝑔𝑛),

for 𝑖 = 1,… , 𝑙, then the null hypothesis test about the population
proportion within the confidence interval has the form:

𝐻 ∶ 𝜋 = 𝜋 ; 𝐻 ∶ 𝜋 > 𝜋
0 0 1 0
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Fig. 12. (a) SPM (up) and SAM (bottom) using the PPMI dataset for 𝑛 = 50, 100, 200 and 269 (red, blue yellow, green). (b) Up and middle: overlap analysis vs sample size.
Observe how the SPM activation map linearly increases with 𝑛 and is located on more than 60 standardized regions with the whole dataset. Typical effects, such as PVE, in this
kind of low-resolution image modality results in rejecting the null-hypothesis although FWE corrected p-values were considered in the inference test. On the contrary, SLT is less
specific but more stable in the rejection of the null-hypothesis. In addition, the ROIs obtained are overlapped more than 80%, using a wide range of small sample sizes. Bottom: A
comparison between all the inferences, i.g.p., Vapnik’s, voxel and clusterwise inferences. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
where 𝜋0 denotes a particular proportion value between 0 and 1,
i.e. 0.5. The test-statistic in a population proportion is:

𝑧 =
̂𝜋 − 𝜋0
𝜎0

(18)

where 𝜎0 =
√

(𝜋0(1 − 𝜋0))∕𝑙. For large samples, i.e. for 𝜋0 = 0.5 at least
𝑙 = 20, if 𝐻0 is true, the sampling distribution of the 𝑧 test statistic is
the standard normal distribution.

Appendix B. Supplementary material

B.1. ADNI in a higher dimension and inference

A similar analysis was carried out with increasing number of com-
ponents, i.e. 𝑁𝑐𝑜𝑚𝑝 = 2, 3,…, however the upper bounds are increased
accordingly as shown in Fig. 9. This highlights the benefits of working
in a low dimensional scenario, 𝑑 = 1, although the use of new features
in the analysis allows us to detect other regions, such as ‘‘Temporal Pole
Sup’’ and ‘‘Temporal Mid’’ regions.
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The analysis described in Section 6.1.2 included only the more
competitive approaches for SPM and SAM, that is voxelwise and i.g.p.
based approaches. In the following Fig. 10 we show all the configura-
tions in SAM and SPM, using the complete ADNI dataset for evaluation
purposes, following the experimental setup previously described in the
latter section.

B.2. A SPECT study: the PPMI database

Data used in the preparation of this article were obtained from
the Parkinson’s Progression Markers Initiative (PPMI) database (www.
ppmi-info.org/data). For up-to-date information on the study, visit
www.ppmi-info.org PPMI is a public–private partnership funded by the
Michael J. Fox Foundation for Parkinson’s Research and funding part-
ners, including all partners listed on www.ppmi-info.org/fundingpar-
tners.

Informed consents to clinical testing and neuroimaging prior to
participation of the PPMI cohort were obtained, approved by the insti-
tutional review boards (IRB) of all participating institutions. The PPMI
obtained written informed consent from all study participants before

http://www.ppmi-info.org/data
http://www.ppmi-info.org/data
http://www.ppmi-info.org/data
http://www.ppmi-info.org


Information Fusion 66 (2021) 198–212J.M. Gorriz et al.
Fig. 13. (a) Significant tests for a population proportion in the fMRI experiment (up), number of activated voxels in ROIs using SPM (middle) and overlap analysis between SPM
and SAM (bottom) (b) Activation maps in the auditory experiment for the whole dataset using the SAM (up) and the SPM (bottom) (c) A comparison between all the inferences,
i.g.p., Vapnik’s, voxel and clusterwise inferences.
enrolled in the Initiative. None of the participants were taking any PD
medication when they enrolled in the PPMI.

The inclusion criteria adopted in the PPMI cohort study are avail-
able in http://www.ppmi-info.org/wp-content/uploads/2014/06/PPM
I-Amendment-8-Protocol.pdf. This diagnostic procedure also includes a
confirmation step based on imaging biomarkers. A selection of 𝑁 = 269
DaTSCAN images from this database were used in the preparation of the
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article. Specifically, the baseline acquisition from 158 subjects suffering
from PD and 111 NC was used. In addition, a similar SPECT image
database from a the ‘‘Virgen de la Victoria’’ (VV) Hospital (Malaga,
Spain) was used to validate and generalize our findings to a dataset
that contains a more complex pattern in the Parkinsonian Syndrome
(PS) class derived from a clinical diagnosis criteria [48] (see Table 1).

http://www.ppmi-info.org/wp-content/uploads/2014/06/PPMI-Amendment-8-Protocol.pdf
http://www.ppmi-info.org/wp-content/uploads/2014/06/PPMI-Amendment-8-Protocol.pdf
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B.2.1. Effect size in static classification
Following the methodology presented in Section 6.1 we will show

(i) the robustness of the proposed methodology in limited sample sizes
regarding effect size and (ii) a quantitative interpretation of effect size
appealing to image classification in diagnostics. As already commented
in [49], studies with low statistical power require large effects to be
observed by hypothesis testing with a pre-specified p-value threshold
(typically 0.05). In DatSCAN imaging of PD the true effect size is
known to be considerably large on specific regions, e.g. striatum. On
the contrary, large effects observed in studies with reduced sizes do
not assure that the true effect is large, or even that it exist at all.
These studies are usually related to poorly mechanistically grounded
hypothesis [39] or a bad specification of clinical analysis plans to
conform the set of observations, i.e. dataset [49].

These issues are can be observed in Fig. 11, where accuracy values
are shown for increasing 𝑛 = 50, 100,…. Effect sizes are large when
they can discriminate between subjects that do and do not show an
effect [39]. Large (but trivial under our hypothesis PDvsHC) effects
observed for 𝑛 = 50,100 samples reduce as the sample size increases
in the VV dataset, unlike in the PPMI dataset. In the latter dataset,
the proposed methodology provides almost the same accuracy values,
which are, in general, shifted up w.r.t the former database, for a wide
range of samples sizes of randomly selected subjects. Anyway, our
method reports effect sizes (in terms of accuracy values) and confidence
intervals alongside exact p values, thus improving the strength of
inference.

B.2.2. Statistical agnostic maps
Compared with the subtle effects in the ADNI dataset, the magnitude

of the effect in this study is relatively large. Thus, maps of significance
derived from both approaches should be similar each other in the spe-
cific regions. However, this image technology has associated important
challenges, such as low resolution empowering partial volume effects
(PVE) [50] and lack of structural information in the images to perform
an accurate spatial normalization and co-registration, [48]. These issues
could reveal the limitations of voxel-wise approaches using sharp null
hypothesis tests, which may find small effects that are practically
unimportant. All these questions are found in Fig. 12 where we show
how SAM are stable several sample sizes and included in the regions
detected by the SPM approach. Moreover, we see how the number of
voxels in the classical approach is dramatically rising with increasing
𝑛, due to the fact that large studies are more likely to find a significant
difference for a persistent trivial effect that is not really meaningfully
different from the null [51].

B.3. A functional MRI study

Data used in the preparation of this article was obtained from the
SPM database related to an epoch auditory fMRI activation data.9 This
database is one of several databases included in the SPM site10 for
personal education and evaluation purposes, and shows the ability of
the SPM methodology for detecting auditory stimulation maps. Specifi-
cally, the experiment associated with the data was conducted by the
FIL methods group and was designed for exploring equipment and
techniques related to fMRI.

The database consists of BOLD/EPI images obtained from a single
subject. They were acquired on a modified 2T Siemens MAGNETOM Vi-
sion system. The number of acquisitions was 96 and each one consisted
of 64 contiguous slices (64×64×64× 3 × 3 × 3 mm3 voxels). Acquisition
took 6.05s, with the scan to scan repeat time (TR) set arbitrarily to 7
s. The acquisitions were made in blocks of 6, giving 16 42 s blocks.
The condition associated with each block alternated between rest and

9 www.fil.ion.ucl.ac.uk/spm/data/auditory/.
10 www.fil.ion.ucl.ac.uk/spm/.
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auditory stimulation, starting with rest. Auditory stimulation was bi-
syllabic words presented binaurally, at a rate of 60 per minute. As the
SPM site recommends the first few scans are discarded to avoid T1
effects in the initial scans of an fMRI time series. Then, 84 acquisitions
were finally used after discarding the first complete cycle (12 scans).
The images were preprocessed (realigned, coregistered using a sMRI,
normalized and smoothed) for collecting two different conditions, rest
and listening. Then, a GLM specification followed by model estimation
and a t-test-based inference (FWE 𝑝-value = 0.05) resulted in the
activation maps for this auditory-evoked potential experiment.

B.3.1. Detecting auditory stimulation maps
In the last sections we have seen the potentiality of the proposed

approach for ROI detection in several binary classification paradigms,
i.e. diagnosis, given the usefulness of machine learning. Images col-
lected from the aforementioned experiment are used to identify areas
performing a specific information processing function, such as the
primary auditory cortex.

The areas identified by the proposed approach are mainly those
corresponding with the temporal lobe, as shown in Fig. 13. A mosaic
and the 3D representation of the activated cortical areas are shown in
the same Fig. 13(b), together with the activation pattern sought by
the SPM methodology. The comparison analysis of both approaches
is displayed in Fig. 13(a). In the upper figure we see the significance
test for a proportion (𝑛 = 84) that was applied to this auditory fMRI
experiment. The SAM is mainly located on regions where we found the
activation voxels in SPM. In the middle we represent the number of
voxels in ROIs (for different sample sizes) and the ratio w.r.t the total
number of voxels in that region. Finally, in the bottom we compared
both approaches using the overlap-analysis type measures, as described
in the last sections. To sum up, we found: (i) the same ROIs in both
approaches, (ii) SPM required sufficiently large sample size to provide
significant ROIs, i.e. for 𝑛 = 20 no significant areas were sought, and
(iii) both approaches converge with increasing sample size to the same
number of activated voxels.
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